Parallel algorithms and architectures for matrix multiplication
نویسندگان
چکیده
منابع مشابه
Fast Matrix Multiplication Algorithms on Mimd Architectures
Sequential fast matrix multiplication algorithms of Strassen and Winograd are studied; the complexity bound given by Strassen is improved. These algorithms are parallelized on MIMD distributed memory architectures of ring and torus topologies; a generalization to a hyper-torus is also given. Complexity and efficiency are analyzed and good asymptotic behaviour is proved. These new parallel algor...
متن کاملAlgorithms for Matrix Multiplication
Strassen’s and Winograd’s algorithms for n × n matrix multiplication are investigated and compared with the normal algorithm. The normal algorithm requires n3 + O(n2) multiplications and about the same number of additions. Winograd’s algorithm almost halves the number of multiplications at the expense of more additions. Strassen’s algorithm reduces the total number of operations to O(n2.82) by ...
متن کاملCommunication-Optimal Parallel 2.5D Matrix Multiplication and LU Factorization Algorithms
Extra memory allows parallel matrix multiplication to be done with asymptotically less communication than Cannon’s algorithm and be faster in practice. “3D” algorithms arrange the p processors in a 3D array, and store redundant copies of the matrices on each of p layers. ‘2D” algorithms such as Cannon’s algorithm store a single copy of the matrices on a 2D array of processors. We generalize the...
متن کاملQuantum Algorithms for Matrix Multiplication
This talk will describe recent progresses in the development of quantum algorithms for matrix multiplication. I will start with the case of Boolean matrices, and discuss the time complexity and query complexity of Boolean matrix multiplication in the quantum setting. I will then focus on other kinds of matrix products, in particular matrix products over algebraic structures known as semirings (...
متن کاملAnalysis of a Class of Parallel Matrix Multiplication Algorithms
A Technical Paper Submitted to IPPS 98 y Abstract Publications concerning parallel implementation of matrix-matrix multiplication continue to appear with some regularity. It may seem odd that an algorithm that can be expressed as one statement and three nested loops deserves this much attention. This paper provides some insights as to why this problem is complex: Practical algorithms that use m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1989
ISSN: 0898-1221
DOI: 10.1016/0898-1221(89)90056-4